Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 255: 112523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489864

RESUMO

The prevalence of antibiotic-resistant pathogenic bacteria poses a significant threat to public health and ranks among the principal causes of morbidity and mortality worldwide. Antimicrobial photodynamic therapy is an emerging therapeutic technique that has excellent potential to embark upon antibiotic resistance problems. The efficacy of this therapy hinges on the careful selection of suitable photosensitizers (PSs). Transition metal complexes, such as Ruthenium (Ru) and Iridium (Ir), are highly suitable for use as PSs because of their surface plasmonic resonance, crystal structure, optical characteristics, and photonics. These metals belong to the platinum family and exhibit similar chemical behavior due to their partially filled d-shells. Ruthenium and Iridium-based complexes generate reactive oxygen species (ROS), which interact with proteins and DNA to induce cell death. As photodynamic therapeutic agents, these complexes have been widely studied for their efficacy against cancer cells, but their potential for antibacterial activity remains largely unexplored. Our study focuses on exploring the antibacterial photodynamic effect of Ruthenium and Iridium-based complexes against both Gram-positive and Gram-negative bacteria. We aim to provide a comprehensive overview of various types of research in this area, including the structures, synthesis methods, and antibacterial photodynamic applications of these complexes. Our findings will provide valuable insights into the design, development, and modification of PSs to enhance their photodynamic therapeutic effect on bacteria, along with a clear understanding of their mechanism of action.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rutênio , Rutênio/farmacologia , Rutênio/química , Irídio/farmacologia , Irídio/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
2.
J Pharm Biomed Anal ; 243: 116107, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489959

RESUMO

Hepatocellular carcinoma (HCC) is a highly prevalent cancer with a significant impact on human health. Curcumin, a natural compound, induces cytoskeletal changes in liver cancer cells and modifies the distribution of lipids, proteins, and polysaccharides on plasma membranes, affecting their mechanical and electrical properties. In this study, we used nanomechanical indentation techniques and Kelvin probe force microscopy (KPFM) based on atomic force microscopy (AFM) to investigate the changes in surface nanomechanical and electrical properties of nuclear and cytoplasmic regions of HepG2 cells in response to increasing curcumin concentrations. CCK-8 assays and flow cytometry results demonstrated time- and concentration-dependent inhibition of HepG2 cell proliferation by curcumin. Increasing curcumin concentration led to an initial increase and then decrease in the mechanical properties of nuclear and cytoplasmic regions of HepG2 cells, represented by the Young's modulus (E), as observed through nanoindentation. KPFM measurements indicated decreasing trends in both cell surface potential and height. Fluorescence microscopy results indicated a positive correlation between curcumin concentration and phosphatidylserine translocation from the inner to the outer membrane, which influenced the electrical properties of HepG2 cells. This study provides valuable insights into curcumin's mechanisms against cancer cells and aids nanoscale evaluation of therapeutic efficacy and drug screening.


Assuntos
Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , Humanos , Microscopia de Força Atômica/métodos , Curcumina/farmacologia , Células Hep G2 , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico
3.
Anal Methods ; 15(15): 1855-1860, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36960734

RESUMO

Voltage-gated sodium channels (VGSCs) are widely expressed in various types of tumor and cancer cells, and NaV1.5 is overexpressed in highly metastatic breast cancer cells. There may be positive relations between the expression levels of NaV1.5 and breast cancer recurrence and metastasis. Herein, NaV1.5 was detected and localized on the surfaces of normal and cancer breast cells by the single molecule recognition imaging (SMRI) mode of atomic force microscopy (AFM). The results reveal that NaV1.5 was irregularly distributed on the surfaces of normal and cancer breast cells. The NaV1.5 has an area percentage of 0.6% and 7.2% on normal and cancer breast cells, respectively, which indicates that there is more NaV1.5 on cancer cells than on normal cells. The specific interaction forces and binding kinetics in the NaV1.5-antibody complex system were investigated with the single molecule force spectroscopy (SMFS) mode of AFM, indicating that the stability of the NaV1.5-antibody on normal breast cells is higher than that on cancer breast cells. All these results will be useful to study the interactions of other ion channel-antibody systems, and will also be useful to understand the role of sodium channels in tumor metastasis and invasion.


Assuntos
Neoplasias da Mama , Canais de Sódio Disparados por Voltagem , Humanos , Feminino , Recidiva Local de Neoplasia , Canais de Sódio Disparados por Voltagem/metabolismo , Linhagem Celular Tumoral
4.
Environ Sci Pollut Res Int ; 25(4): 3435-3445, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29152696

RESUMO

2,4,6-Trichloroanisole (TCA) is an odorous compound that is often detected in tap water and is difficult to be removed via water treatment. In this study, the transformation efficiency of TCA in the presence of persulfate (PS) activated by iron (Fe2+, Fe0, and Fe3+) was investigated for the first time. The effects of the activator dosage, oxidant dosage, pH, dosing method, chelating agents, humic acid, and temperature were evaluated. The degradation rate of TCA increased with increasing PS dosages (0.12-0.48 mM) and initial Fe2+ concentrations (0.12-0.96 mM), while it decreased with higher Fe2+ concentrations. Fe2+/PS and Fe0/PS systems achieved their best TCA removal efficiency at pH 7 and 2.5, respectively. According to the results of electron paramagnetic resonance (EPR), the contribution of SO4-• to TCA degradation was much higher than that of •OH. Gradual addition of Fe2+ improved TCA degradation compared to single addition. Citric acid (CA) promoted TCA degradation under Fe2+/PS at the beginning of the reaction, but inhibited it after 10 min. Ethylenediaminetetraacetic acid (EDTA) improved the TCA removal rate with an EDTA/Fe2+ molar ratio of 0.5:1, while it decreased it at higher EDTA/Fe2+ molar ratios. Oxalic acid (OA) negatively affected TCA degradation with increasing OA/Fe2+ molar ratios. Among all of the chelating agents, only CA increased TCA degradation by Fe0/PS. Humic acid promoted TCA degradation by Fe2+/PS at the proper dosage (1 mg/L). Under our specific conditions and over the temperature ranging from 10 to 25 °C, no change was observed in the reaction kinetics. It was found that 2,4,6-trichlorophenol (TCP) was the only detected oxidation product. The presence of an Fe2+-Fe3+ redox cycle in iron-activated PS systems was confirmed by TCA degradation under the Fe3+/PS system.


Assuntos
Anisóis/metabolismo , Ferro/química , Odorantes , Sulfatos/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Anisóis/química , Quelantes , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Cinética , Odorantes/análise , Oxirredução , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA